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Abstract: Generalized Gaussian quadrature rules for Müntz systems are considered. In a particular 
but very important case, the -point quadrature formula which integrates exactly functions of the 
form , where  and  are arbitrary algebraic polynomials of 

degree at most , is obtained. In order to illustrate the efficiency of the obtained formula a 
numerical example is presented. 

1. Introduction 
In many computational applications in engineering, the boundary element method (BEM) 
requires the numerical evaluation of integrals with an end-point logarithmic singularity (cf. 
Katsikadelis [1]). In this short note we provide a numerical quadrature method for such a kind 
of integrals. These Gaussian quadrature rules possess several properties of the classical 
Gaussian formulae (for polynomial systems) and they can be applied to the wide class of 
functions, including smooth functions, as well as functions with end-point singularities, such 
as those appeared in the boundary-contact value problems, integral equations, etc.  

2. Gaussian Rules for Müntz Systems 
Gaussian integration can be extended in a natural way to non-polynomial functions, taking a 
system of linearly independent functions  
                                                                 (1) 

usually chosen to be complete in some suitable space of functions. If  is a given 
nonnegative weight on  and the quadrature rule  

                                                                    (2)  

is such that it integrates exactly the first  functions in (1), we call this rule as generalized 
Gaussian quadrature with respect to the system (1). The existence and uniqueness of such a 
generalized Gaussian quadrature rule is always guaranteed if the first  functions of this 
system constitute a Chebyshev system on . Then, all the weights  in (2) are 
positive. The generalized Gaussian quadratures for Müntz systems goes back to Stieltjes in 
1884. Taking  on , where , Stieltjes showed the 
existence of Gaussian formulae.  In 1996 Ma, Rokhlin and Wandzura [3] gave a numerical 
algorithm for constructing the generalized Gaussian quadratures, but their algorithm is ill 
conditioned (see [3]). Recently Milovanović and Cvetković [5] presented an alternatively 
numerical method for constructing the generalized Gaussian quadrature (2) for Müntz 
polynomials, which is exact for each                
This method is rather stable and simpler than the previous one, since it is based on 
construction and stable computation of orthogonal Müntz systems, previously developed in 
[4]. The method performs calculations in double precision arithmetics in order to get double 
precision results.  



An interesting case of these rules can be obtained if we take , . Then 

our system becomes  and the 
corresponding -point Gaussian quadrature formula (2) is exact for all functions of the form 

, where 

€ 

f1(x)  and 

€ 

f2(x)  are algebraic polynomials of degree at 
most 

€ 

n −1. The parameters of such quadratures for a given  can be obtained by using 
algorithms from [6]. For example, for , , and , we have the following 
lists of nodes and weights,  
 
{node5,weight5}={{0.00565222820508010,0.0734303717426523,0.284957404462558, 

0.619482264084778,0.915758083004698},{0.0210469457918546,    
0.130705540744447,0.289702301671314,0.350220370120399,0.208324841671986}} 

 
{node10,weight10}={{0.000482961710689632,0.00698862921431577,     

0.0326113965946776,0.0928257573891660,0.198327256895404, 
0.348880142979353,0.530440555787956,0.716764648511655, 
0.875234557506234,0.975245698684393},{0.00183340007378985, 
0.0134531223459918,0.0404971943169584,0.0818223696589037, 
0.129192342770138,0.169545319547259,0.189100216532996, 
0.177965753961471,0.133724770615462,0.0628655101770317}}  

 
{node15,weight15}={{0.000105784548458628,0.00156624383616781, 

0.00759521890320708,0.0228310673939862,0.0523886301568200, 
0.100758685201213,0.170740768849943,0.262591206118993,0.373536505184558, 
0.497746358414533,0.626789031392374,0.750516103461408,0.858255335207861, 
0.940141291212346,0.988401595986342},{0.000403217724648462, 
0.00306297843478701,0.00978421211876610,0.0215587522255813, 
0.0383230673708892,0.0588981990263005,0.0811170299392595, 
0.102122101972069,0.118789059030401,0.128210316446694,0.128163327417093, 
0.117489465888492,0.0963230185695906,0.0661345398318932, 
0.0296207140035362}} 

 

Example 1. We apply the quadrature formula (2) to the integral  

                                     

which value can be expressed as . The 
relative errors in the corresponding Gaussian quadratures for , , and  are 

, , and , respectively. On the other side in this example, a 
sequence of Gauss-Legendre quadratures converges much slower. For example, relative 
errors are , , and  for , , and , respectively.  
 
Some transformation methods for integrals with Müntz polynomials can be also found in [2].  
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